Ischia Advanced School of Organic Chemistry 19-23 September 2024, Ischia, Italy

> D UNIVERSITÄT BERN

U

Enzymes in Hybrid Catalytic Systems

Francesca Paradisi

Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern

francesca.paradisi@unibe.ch

www.paradisiresearch.com

Twitter: @ParadisiResLab

The *combination* of biocatalysis and chemocatalysis can

be more powerful than either technique alone.

C. Heckmann

Chem. Eur. J. **2021**, 27, 16616 – 16620

U

1. Biocatalysts immobilization

Increased stability and versatility

2. Integration of biocatalysis with chemical reactions

Compatibility

3. Flow chemistry set up

Modularity and easier transition

U

Immobilisation of the biocatalyst

Paradisi Research

Many options and variables:

- Type of support and functionalization
- Type of immobilization (covalent or not)
- 3. Type of chemistry

GMQTQDYQALDRAHHLHPFTDFKALGEEGSRW/THAEGVYI HDSEGNRLDGMAQLWC/NLGYGRRELVEAATAQLEQLPY YNTFFKTTHPPA/RLAFKLCDLAPAHINKFTGSGSEANDT VLRMVRRYWALKOOPDKQ/WIGRENAYHGSTLAG/NSLGGM APMHAQGGPC/VPGIAHIRQPYWFGGGRDMSPEAFQQTCAE ALEEXILEI.GEEK/VAAFAEPVQGAGGAINPPESYWPA/KK/V LAKYDILLVADEV/CGFGRLGEWFGSQHYGLEPDLMPAKGL SSGYLPIGQU/UGDRVAETILEIGGGEFHGFTYSGHPTCAAV ALKNLEILEAEGV/DR/RDDLGPYLAERWASLVDHPIVGEA RSLGLMGALELVADKTTGQRFDKSLGAGNLCRDLCFANGL/V MRSVGDTMISPPLVIRREEIDELVELARRALDETARQLTQVP HTQEEPTA

Sequence

Modelling

Simulation

4

Increased Enzyme Stability

(Ir)reversible bond

Lower catalytic efficiency

Immobilized enzymes in flow

Green Chemistry **2017**, 19, 372-375

Nature Catalysis 2018, 1, 452-459

Green Chemistry 2019, 21, 3263-3266

Green Chemistry **2020,** 22, 5310- 5316 *ChemCatChem* **2024,** e202301671

Green Chemistry 2021, 23, 4595-4603

ChemSusChem 2022, 16, e202200811

...purely biocatalytic cascades...

b

Ũ

A recent example

Imine reductases (IREDs)

- Dimeric proteins
- Easy heterologous expression in *E. coli*
- High enantioselectivity (>99%)
- High conversions (70-100% at 5 mM scale)

- Reduction of hydrophobic cyclic imines
- Cofactor-dependent enzymes
- Very poor enzyme immobilization (<5% efficiency)
- No flow reactions reported so far

Activity assay: substrate scope

Reaction conditions

- Substrate: 5 mM
- NADPH: 0.3 mM
- Buffer: 100 mM phosphate pH 7.5 with 1% DMSO
- **Tº**: 37°C
- Volume: 0.2 mL

Specific activity (U/mg)

			HN	HN N	S N	
IRED-1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
IRED-2	0.24	0.12	0.06	n.d.	62.3	13.6
IRED-3	0.1	0.1	0.12	n.d.	9.8	2.5
IRED-4	0.1	0.21	0.1	n.d.	39.4	8.6
IRED-5	1.4	0.8	0.2	n.d.	5.9	4.5
IRED-6	0.3	0.07	0.1	n.d.	14.8	10.8

+

 $\boldsymbol{u}^{\scriptscriptstyle{\scriptscriptstyle{\mathsf{b}}}}$

Protein immobilization

CapiPy: Relevant Clusters

Monomer 2

Cluster of Lys Cluster of Asp and Glu

IRED-5

Enzyme Immobilization Screening

Enzyme	Chemistry	Immobilization Yield (%)	Recovered Activity (%)	Reusability (%)
IRED-3	Ag/Epoxy-Amino	52	24	35
	Ag/Epoxy-Amino	84	8	93
	Ag/Epoxy-Amino	99	26	89
	Ag/PEI	100	95	20
	Ag/PEI-GA	90	19	100
IRED-4	Ag/Epoxy-Amino	10	24	100
	EP400SS/Epoxy-Amino	60	9	100
	EP403S/Epoxy-Amino	25	8	74
IRED-5	Ag/Epoxy-Metal	90	39	100
	Ag/Epoxy-Amino	19	21	88
IRED-6	Ag/Metal	94	17	63

Cofactor Recycling and Reusability

Reusability of immobilized biocatalysts

BmGDH: glucose dehydrogenase from Bacillus megaterium

10 mM thioimine, 1 mM NADP+, 40 mM glucose. Tº: 37ºC. Cycle time: 2 h.

Continuous Flow

Heterocyclic amine: product	Substrate concentration (mM)	Conversion (IRED-4)	Conversion (IRED-5)	
H	()			
N N N N N N N N N N N N N N N N N N N	10	3.4	n.d.	
S	10	98	91	
	50	88	91	
H	100	61	46	
0	10	46	69	
	50	19	50	
H H	100	14	28	

Summary (1)

A Choice of the enzyme to target a specific reaction

☆ Immobilization efficiency

☆ Compatible recycling system

 \bigstar Implementation in continuous flow

Integrated (bio)catalysis

U

Integrating chemical steps

Calculated E-factor (Environmental Factor = kg of waste per kg of desired product): **36**

Starting material value raised by **200-fold** (L-tyrosine disodium salt hydrate 1.72 €/g, hordenine 382 €/g)

Molar conversion 92% Isolated yield 77% Residence time 2.5 min 130 mL in 4h

An industrial challenge

Aqueous solvent systems for biocatalytic step is incompatible with the Suzuki-Miyaura cross-coupling

with Díaz-Kruik, et al. OPRD 2024, DOI: 10.1021/acs.oprd.4c00080

Research Solvent switching for integrated catalysis

with Díaz-Kruik, et al. OPRD 2024, DOI: 10.1021/acs.oprd.4c00080

 $u^{\scriptscriptstyle \flat}$

There are several challenges in integrating catalytic

approaches

Compatible chemistry (may be limited)

☆ Flow enables optimal conditions

Solvent switching: rethink standard chemistry

Smart materials for enzyme immobilization

Photobiocatalysis

Photons as traceless catalystsPowered by the sun

The popularity of the subject has been increasing in recent years:

Web of Science Database search terms: "Photobiocatalysis" or "Photoenzymatic"

Mild reaction conditionsSpecificity and selectivity

Photobiocatalysis

Hollmann, Adv. Synth. Catal. 2009, 351, 3279

Hyster, *Nature*, **2016**, 540, 414

Höhne, Schmidt, *EuJOC*, **2019**, 1, 80

Photoactive supports for biocatalysis

Paradisi

Research

Haloperoxidases

- Most abundant halogenases (Heme or V dependent)
- Consume H₂O₂ to generate XOH ('electrophilic' X⁺)
- Can withstand high T, organic solvents
- Sensitive to high [H₂O₂]

Organic Photosensitiser (OrgPS)

- Able to generate H₂O₂
- Photostable
- Polymerisable
- Easy to obtain

Ũ

Photostability of CiVCPO

Vanadium-dependent chloroperoxidase from *Curvularia inaequalis* (CiVCPO) (Thanks to Frank Hollmann for the plasmid!)

ป

pHIPE-BTZ/COOH Monolith Synthesis

U

H₂O₂ generation efficiency

³ O ₂		$\sim H_0 \Omega_0$		
Solvent system, $R_t = 10$ min, 26 °C				
Entry	Solvent system	Rt (min)	H ₂ O ₂ Output (μM)	
1	H ₂ O	10	18.6	
2	H ₂ O/MeOH (9:1)	10	1.96	
3	H ₂ O/MeOH (6:4)	10	1.00	
4	H ₂ O/DMF (9:1)	10	7.42	
5	H ₂ O/DMF (9:1)	10 (air)	13.6	
6	H ₂ O/DMF (9:1)	30	7.05	
7	H ₂ O/DMF (3:1)	10	5.60	
8	H ₂ O/DMF (3:1)	10 (air)	9.05	
9	H ₂ O/DMF (3:1)	30	6.0	
10	H ₂ O/2-MeTHF (1:1)	10	115.7	
11	H ₂ O/2-MeTHF (1:1)	10 (air)	97.9	
12	H ₂ O/2-MeTHF (1:1)	30	89.8	

pHIPE-BTZ, hv (456 nm)

U

VCPO immobilization

Protein Loading: 2.5 mg/g Immobilization yield: 98% Recovered activity: 82% Immobilized activity: 1.7 U/mg

Stability of pHIPE-BTZ/CiVCPO over 3 cycles

 $u^{\scriptscriptstyle \mathsf{b}}$

Reaction Scope

Summary (3)

rirst example of an integrated

photobiocatalytic resin

☆ Excellent single pass & recirculation yields

U

JM Johnson Matthey Inspiring science, enhancing life

BBSRC

Supported by Wellcometrust

(ERA CoBioTech

Roche

Acknowledgements

Current team members:

Dr. David Lim Dr. Gordon Honeyman Dr. Manos Broumidis Dr. Stefania Gianolio Dr. Arpita Mrigwani Lauriane Pillet Keir Penston Pablo Diaz Kruik Beatrice Rassati Roja Aziziyan Glenn Bojanov Arina Pavlova Iya Nonikashvili Ashvin Gopalasingam Martin Schümann

...and all the past team members

Collaborators:

Dr. Hans Iding (Roche) Dr. Kurt Püntener (Roche)

Dr. Radka Snajdrova (Novartis) Dr. Hansjoerg Lehmann (Novartis)

Dr. Hao Wu (Boehringer) Dr. Frederic Buono (Boehringer)

Dr. David Roura (inSEIT)

Thank you for your attention!