IASOC 2004

Ischia, September 18-23, 2004

Integrins as Drug Targets: Rational and Combinatorial Development of Selective Ligands for Integrins

Horst Kessler

Technische Universität München

www.org.chemie.tu-muenchen.de

Outline

2

1. Introduction

- 2. RGD Peptides
- 3. Applications
 - 3.1. Therapy
 - 3.2. Diagnosis
 - 3.3. Biomaterials
- 4. From Peptides to Non-Peptides
- 5. Mechanism of Signal Transduction
- 6. Non-RGD Peptidomimetics

Biology of Integrins

The Integrin Receptor Family

Integrines and Their Ligands (blue: RGD binding)

	α1	α2	α3	α4	α5	α6	α7	α8	α9	α10	αΕ	αL	αΜ	αχ	αD	αllb	αν
β1	Col Ln	Col Ln Fn	Col Ln5 Fn	Fn In VCAM-1	Fn	Ln	Ln	Fn Vn Tn	Col Ln Tn	Col							Vn Fn Opn
β2												ICAM-1 ICAM-2	iC3b Fb Factor X ICAM-1 ICAM-2	iC3b Fb	ICAM-3 VCAM- 1		
β3																Fb Fn Vn vW F Tsp	Vn Ln Fn vWF Tsp Tn Opn Fib Fbu
β4						Ln Ep											
β5																	Vn, Fn Opn, Fb vWF
β6																	Fn, Fb Tn
β7				MadCAM -1, Fn VCAM-1							E- Cad						
β8																	Vn

Where comes the specifity ?

- additional binding epitopes ?
- different bioactive conformations ?
- both ?

A Linear Peptide Can Adopt Multible Conformations

mismatched case

matched case

The Conformational Space for Flexible and "Rigid" Ligands

A Cyclic Peptide of Five Identical Amino Acids Exhibits a Fast Equilibrium of Five Degenerated Identical Structures (Effektive C₅ Symmetry)

Reaktionskoordinate

Distortion of Symmetry

Search for Preferred Conformations

(often incorrectly called "rigid" conformation)

the chiralty of the amino acids controls the backbone conformation

penta- and hexapeptides

= D-Ala, Gly, D-Pro, L-Pro

all corners = L-Ala

H. Kessler, R. Gratias, G. Hessler, M. Gurrath, G. Müller; Conformation of cyclic peptides. Principle concepts and the design of selectivity and superactivity in bioactive sequences by 'spatial screening'; *Pure & Appl. Chem.* **1996**, *68*, 1201-1205

D-Amino Acid Scan of cyclo(RGDFV)

linear reference GRGDSPK: 1.2 µmol

M. Aumailley, M. Gurrath, G. Müller, J. Calvete, R. Timpl, H. Kessler; FEBS Lett. 1991, 291, 50-54.

Selectivity of Peptide Integrin Antagonists

M. Gurrath, G. Müller, H. Kessler, M. Aumailley, R. Timpl; Eur. J. Biochem. 1992, 210, 911-921.

Conformation can differentiate between different α integrin subunits

M. Pfaff, K. Tangemann, B. Müller, M. Gurrath, G. Müller, H. Kessler, R. Timpl, J. Engel; *J. Biol. Chem.* **1994**, *269*, 20233-20238

G. Müller, M. Gurrath, H. Kessler; J. Comp-Aided Mol. Design 1994, 8, 709-730.

Inhibition of Neoangiogenesis of Human Tumours on Chicken Chorioalantioc Membranes

Brooks et al. Cell 79, 1157 - 1164 (1994)

Derivatization of the RGD-Cyclopentapeptide

R. Haubner, D. Finsinger, H. Kessler; Angew. Chem. Int. Ed. Engl. 1997, 36, 1374-1389

Effect of N-Methylation of the Peptide Bonds in cyclo(RGDfV)

Dechantsreiter E. Planker, B. Mathä, E. Lohof, G. Hölzemann, A. Jonczyk, S. L. Goodman, H. Kessler et al., *J. Med. Chem.* **1999**, *42*, 3033-3040

Applications of Integrin Ligands

Glycosylated RGD-Containing Peptides: Tracer for Tumor Targeting and Angiogenesis Imaging with Improved Biokinetics

Cancer Res. **2001**, *61*, 1781

J. Nucl. Med. 2001, 42, 326

RGD peptide without a sugar residues exhibited low contrast because of rapid clearance also from the tumor tissue

[¹⁸F]Galacto-RGD Axillary Lymph Note Metastasis / Melanoma

СТ

PET Galacto-RGD 220 MBq; 2h p.i.

PET/CT-Fusion Galacto-RGD

Beer, Haubner et al. (unpublished)

Monomeric and Dimeric ¹⁸F-c(RGDfE)-Peptides [¹⁸F]FBA: AOE: Aminooxy-essigsäure 4-[18F]Fluorbenzaldehyd 0 NH Dpr: Diaminopropionsäure 18_F O. NH O Hegas: NH 0 5 Heptaethylenglykol-COOH NH aminocarbonsäure Н HN N 0 NH O 0 H CO HN 0 0 0 0 HN HN 5 NH₂ 5 HO NH O= HN NH NH NH 0 C-N O H N-C c(RGDfE) HN 0 Ō 0 NH 0 0 HN н NH 0 NH₂ HO NH O H₂N OH 0 HN NH NH NH HN 0

Thumshirn G et al. Chemistry 2003, 9, 2717-25

Multimeric RGD Peptides

Tumor to Organ Rations

nude mice, M21-($\alpha v\beta$ 3+)-melanoma, 2 h p.i. (n=3-5)

Surface Coating of Biomaterials

Design of Coating Molecules

SiH $-NH_2$ (BSA) acid

(RGDfE)-COOH (RADfE)-COOH

Applications of αv Selective Inhibitors

Biomaterials

• surface anchoring (biocompatibility)

not coatedRGD coatedM. Kantlehner et al., Angew. Chem. Int. Ed. 1999, 38, 4, 560-562.

Modeling of Non-Peptidic Ligands for Coating of Surfaces

X-ray structure

automated docking

Cilengitide (I)

L.Marinelli, A. Lavecchia, K.E. Gottschalk, E. Novellino, H. Kessler, *J. Med. Chem.* **2003**, *46*, 4393-4404.

Stimulated Cell Adhesion on Titanium

C. Dahmen, J. Auernheimer, A. Meyer, A. Enderle, S.L. Goodman, H. Kessler, Angew.Chem. **2004**, in press

Aza Peptide Mimic

Structure of cyclo(RazaGDf[NMe]V)

cyclo(-Arg-azaGly-Asp-D-Phe-[NMe]-Val-)

 $IC_{50} 6 nM (\alpha v \beta 3)$

Design of Modularly Assembled RGD Mimetics

Design of an RGD Mimetic Library: Building Blocks A-D

C.Gibson G. A. G. Sulyok, D. Hahn, S. L. Goodman, G. Hölzemann, H. Kessler . *Angew. Chem. Int. Ed. Engl.* 2001, 40,165-169.

On Bead Screening of Libraries with 330 Compounds

Selection of an Active Compound

Some Selected $\alpha v \beta x$ Inhibitors

Compound	IC ₅₀ (nM) on integrin						
	ανβ3	ανβ5	ανβ6	αΠρβ3			
cyclo(RGDf(NMe)V)	4	70	550	600			
cyclo(RazaGDfV)	4	500	6000	6000			
П	64	2500	2	> 10000			
H O H OH OCF3	45	7	0.2	> 10000			
C R R O R O R O R O R O R O R O R O R O	0.45	2670	0.6	4050			

S. L. Goodman, G. Hölzemann, G. A. G. Sulyok, H. Kessler, J. Med. Chem. 2002, 45, 1045-1051

Evolution of a Lead Structure: The RGD Sequence

Small molecules can distinguish between different β subunits

and between α IIb and α v

small ligands bind in the interphase between α and β

Integrin Structure – the Complex (2002)

Xiong et al. Science 2002, 296, 151 - 155

Structural Basis of SAR

Docking of Non-Peptidic Ligands

J. Med. Chem. 2003, 46, 4393-4404.

Homology Models of β_5

- Secundary structure of $\alpha_{v}\beta_{3}$ (yellow) with RDG-ligand (grey)
- Homology models of β_5 subunit (different colors) show great similarity except SDL (Lys159 Phe189)

L.Marinelli, K.E. Gottschalk, A. Meier, E. Novellino, H. Kessler, J. Med. Chem. 2004, 47, 4166-4177.

Selectivity between $\alpha v\beta 5$ and $\alpha v\beta 3$

Glycophorin A and Integrins Have a Common Dimerization Motif

*7T

1

3

4

8477

1

8

15

GXXXG motif

73	5 _{LI}	79	GV	8	3 _{GV}	8	7 _T		GpA							
1091 _Y	LY	VL	SG	IG	GL	LL	L	LLIF	αL							
1107 P	LI	VG	SS	VG	GL	LL	L	ALIT	aM							
1103 P	II	MG	SS	VG	AL	LL	L	ALIT	αD							
1107 P	LI	VG	SS	IG	GL	LL	L	ALIT	αΧ				т	at a fa ai a	1 Deside	an of Co A
1115 W	VI	LL	SA	FA	GL	LL	L	MLLI	α1				I	menacia	i resituu	es or GpA
1133 _G	VI	IG	SI	IA	GI	LL	L	LALV	α2	8		"L	⁷⁶ I	"G	Λ_{0s}	⁸³ G
993 W	LV	LV	AV	GA	GL	LL	L	GLII	α3	ğ	c				1	
985 _V	IT	SS	SL	LL	GL	IV	L	LLIS	04 4	nt	G			7	1	20
1000	IT	IL.	AT	LF	GL	LL	L	GLLI	α5	N V U				10		
1016	TT	LV	AT	LA	GI	LM	L	ALLV	a 6	. Е				10	4	1
1039 W	VT	LL	GV	T.A	GL.	LV	L	ALLV	a7	50	F		1		1	
975	VT	TI.	AT	LL	GL.	LV	T.	ATLL	α8	ft	Y		1			
981	IT	TA	SL	LV	GI	LT	F	LLLA	a 9	ΕĮ	M	1				
1124 W	IL	IG	SV	LG	GL	LL	L	ALLV	a10	53	т	1		1	1	
998 _W	WV	LV	GV	LG	GL	LL	1	TILV	a2b	due		-		-	1	
995 W	VT	IL	AV	LA	GL	LL	L	AVLV	av	22	A	4		0		3
1125 p	TT	TK	GS	VG	GL	LV	L	IVIL	αE	R	P	1			-	
										00 Cl	W	1				
730 _I	PI	VA	GV	VA	GI	VL	I	GLAL	β1	1 F	v	6	3		9	
702 _A	AI	VG	GT	VA	GI	VL	I	GILL	B2	0	I	8	18		4	
720 _L	vv	LL	SV	MG	AI	LL	I	GLAA	B 3	es			1		0	-
721 M	TI	LL	AV	VG	SI	LL	V	GLAL	B 5	10	L L				4	1
709 P	MI	ML	GV	SL	AT	LL	I	GVVL	B 6	0						
725	AT	VL	GC	VG	GI	VA	V	GLGL	B 7	1						
688 1	IF	IV	TF	LI	GL	LK	v	LIIR	β8	1						
F	WWL	IPL	LLL	LLPI	LLA	LLL	LLC	CW	β4							

K. Gottschalk, P.D. Adams, A.T. Brunger, H. Kessler, Protein Science 2002, 11, 1800 - 1812

Global Search of Helix-Helix Interactions: Degrees of Freedom

Х

Integrin Subtypes Globally Searched

	β1	β2	β3	β5	β6	β7	β8
α1	X						
α2	x						
α3	x		16 di	iffere	nt		
α4			inte	arins	5	Х	
α5	x			gint			
α6	x						
α7	x						
αD		х					
αL		х					
αΜ		х					
αV	x		Х	х	Х		Х
αIIb			х				

Open and Closed Conformation Comparison with Experimental Results

Haas et al. *J.Biol.Chem.***1996**, 271, 6017-26 Vallar et al.*J.Biol.Chem.***1999**, 274,17257-66 Hughes et al. *J.Biol.Chem.* **1996**, 271, 6571-4 Lu et al *J.Biol.Chem.***2001**, 276, 14642-8

MacKenzie et al. *Science* **1997**, *276*, 131-133

Transition Between High-Affinity and Low-Affinity State: Three States?

High temperature molecular dynamics simulations starting from open and closed conformations (150 calculations per starting structure)

Oligomerization of Integrin Subunits from α **IIb** β **3**

The Trimer of the β Subunite allows Dimers of α to Associate

Activation of Integrins and Formation of Focal Adhesions

Acknowledgement (RGD)

cyclic peptides	Marion Gurrath Gerhard Müller	R. Timpl J. Engel	(MPI Martinsried) (Uni Basel)			
	Michael Dechantsreiter	S. Goodman	(Merck KGaA)			
aza-peptides	Jochen Wermuth	A. Jonczyk				
	Harald Schmidt	G. Hölzemann M. Wiesner	(alle Merck KGaA)			
non-peptide	Christoph Gibson Gabor Sulyok					
radio-labeling	Armin Modlinger	M. Schwaiger	alle Nudda arread - Klinite			
	Martin Sukopp	R. Haubher H. J. Wester	TUM			
biomaterials	Martin Kantlehner	E. Sackmann et al.	(TUM, Biophysik)			
	Claudia Dahmen	J. Spatz et al. M. Stutzmann el al.	(Uni Heidelberg) (Schottky-Institut)			
	Jörg Auernheimer	B. Jeschke et al.	(Merck-Biomaterials)			
modelling	Kay Gottschalk	A. Brunger	(Stanford)			
	Robert Günther	P. Adams	(Berkeley)			
	Luciana Marinelli	A. Lavecchia	(Uni Napoli)			